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Abstract

The effect of an internal turbulent bubbly flow on vibrations of a channel wall is investigated experimentally and

theoretically. Our objective is to determine the spectrum and attenuation rate of sound propagating through a bubbly

liquid flow in a channel, and connect these features with the vibrations of the channel wall and associated pressure

fluctuations. Vibrations of an isolated channel wall and associated wall pressure fluctuations are measured using several

accelerometers and pressure transducers at various gas void fractions and characteristic bubble diameters. A

waveguide-theory-based model, consisting of a solution to the three-dimensional Helmholtz equation in an infinitely

long channel with the effective physical properties of a bubbly liquid is developed to predict the spectral frequencies of

the wall vibrations and pressure fluctuations, the corresponding attenuation coefficients and propagation phase speeds.

Results show that the presence of bubbles substantially enhances the power spectral density of the channel wall

vibrations and wall pressure fluctuations in the 250–1200 Hz range by up to 27 and 26 dB, respectively, and increases

their overall rms values by up to 14.1 and 12.7 times, respectively. In the same frequency range, both vibrations and

spectral frequencies increase substantially with increasing void fraction and slightly with increasing bubble diameter.

Several weaker spectral peaks above that range are also observed. Trends of the frequency and attenuation coefficients

of spectral peaks, as well as the phase velocities are well predicted by the model. This agreement confirms that the origin

of enhanced vibrations and pressure fluctuations is the excitation of streamwise propagating pressure waves, which are

created by the initial acoustic energy generated during bubble formation.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Bubbly-flow-induced pipe vibrations often exist in industrial heat exchangers, such as condensers, evaporators,

nuclear steam generators, boilers and reboilers (Pettigrew and Taylor, 1994). Under certain conditions, these vibrations

may become excessive, and may cause serious pipe failure by fatigue, fretting wear and cracking, leading to costly

maintenance and loss of production. Therefore, measuring and understanding these vibrations has attracted

considerable research interest in the past.
e front matter & 2010 Elsevier Ltd. All rights reserved.
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Previous studies of this problem may be divided into two groups: one dealing with flows with vapor bubbles and

another with flows with gas bubbles. The studies in the first group are more numerous as the situation here is closer to

that of many practical applications. Representative studies are those by Pettigrew and Gorman (1981), Feenstra et al.

(1995), Mann and Mayinger (1995) and Nakamura et al. (2002) who introduced tube bundles into steam bubbly cross-

flows to approximate the situation encountered in heat exchangers. These experiments are expensive and difficult and

require complex experimental facilities. For these reasons, and also in view of their inherent interest, other researchers

have studied similar arrangements in which the bubbles consist of an incondensable gas rather than vapor (see, e.g.,

Gorman, 1971; Joo and Dhir, 1994; Iijima et al., 1995; Uchiyama, 2003; Heilker and Vincent, 1981; Pettigrew et al.,

1985, 2001, 2005). The two situations are physically different, although they exhibit some similarities, such as the

excitation of pipe vibrations, as shown by Weaver and Fitzpatrick (1988) and Pettigrew et al. (2002). All these

investigations, with both vapor and gas bubbles, show that bubbly flows cause a substantial increase in the amplitude of

pipe vibrations. Two main mechanisms, as summarized by Weaver et al. (2000), are responsible for the enhanced

vibrations. The first is fluidelastic instability, which occurs beyond a critical flow rate, when interactions among

individual tubes generate excitation forces on the surrounding tubes. These forces, which vary with the void fraction,

reduced velocity and flow pattern, are both proportional to tube displacements and in-phase with tube velocities,

leading to great enhancement in the vibration amplitudes. The second mechanism is random turbulence excitation. The

resultant excitation force by the presence of bubbles, dependent on flow conditions and void fraction, increases

broadband pressure fluctuations near the tubes and consequently tube vibrations.

It is worth mentioning that the previous studies only focused on the channel vibrations caused by external bubbly

flow. To the best of our knowledge, channel vibrations induced by internal bubbly flow have never been investigated

before. However, according to the Heat Transfer and Fluid Flow Service of Canada (HTFS; Pettigrew and Taylor,

1994), more than half of the process heat exchangers operate in an environment of two-phase bubbly flow, which

inherently involves also internal bubbly flows. Thus, it is of engineering significance to investigate the role and

contribution of internal bubbly flow on the vibrations as, our group has done in recent years. In a first stage of this

research program, the gas bubble case is studied by introducing CO2 gas bubbles into a channel flow, and examining the

channel vibrations. Following two conference papers with preliminary results (Pelletier et al., 2006; Zhang and Katz,

2007), this paper provides both data and analysis of the observed substantial increase in channel wall vibrations and

wall pressure fluctuations after introducing bubbles into the flow. We first show that vibration and pressure fluctuation

spectra vary with void fraction, characteristic bubble size, and location within the channel. Subsequent analysis then

focuses on the observed spectral peaks and their variations along the channel. We show that a mathematical model of

sound propagation and attenuation in a bubby medium using waveguide theory, based on earlier work of Commander

and Prosperetti (1989) and Lu (1990), predicts and elucidates the observed trends. We start with a description of the test

facility and data acquisition procedure in the following section.
2. Experimental set-up and procedures

The experiments have been performed in a closed-loop water channel facility, which was used in previous studies of

flow-induced vibrations (Gopalan et al., 2004), and then substantially modified for generating flows with controlled

bubble sizes and spatial distributions for the present work. Fig. 1(a) shows a schematic of the facility. The water is

driven by two 11 kW centrifugal pumps, located in the basement below the facility to prevent any pump cavitation

issues, and connected to the facility by flexible hoses. Three strategies are implemented to isolate the test channel from

external excitations. First, the settling chamber is mounted on vibration-isolated supports, and the test channel is

supported by vibration-isolated padding. Second, long flexible hoses with varying lengths are used for connecting

components of the test loop to reduce the effect of pump-induced vibrations or other facility resonances on the channel

flow. Third, water is introduced into the settling chamber (see, Fig. 1(a)), through perforated plates covering three of the

chamber’s walls, while the remaining wall has a port through which the bubble injector is inserted. By doing so, the

primary extraneous unsteady loading, namely the signatures of non-uniformities generated by upstream pipe flows and

pumps are greatly reduced. The channel is also supported by a heavy structure that does not vibrate at any meaningful

level when there is flow, with or without bubbles, in the facility. The bubbles are introduced in the settling chamber, and

the bubbly water passes through a honeycomb and a streamlined nozzle before entering a 0.15 m� 0.15 m cross-section,

2 m long channel. Suction of the boundary layer on the channel wall, followed by tripping using a series of grooves,

reduces the effects of upstream disturbances, and generates a classical, fully turbulent boundary layer profile (Gopalan

et al., 2004). The test channel is aligned vertically to prevent gravity-induced streamwise variations in bubble

distribution. It is essential to remove and reintroduce bubbles continuously so that their size and spatial distribution can
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Fig. 1. Experimental set-up: (a) The quiet bubbly flow test facility; (b) schematic of vibration isolated plate mounting; (c) the test plate

and location of accelerometers and pressure transducers and (d) schematic of infinitely long rigid channel model.
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be controlled. Thus, after leaving the test channel, the bubbly water flows into two large tanks (�4000 l total) whose

purpose is to remove the bubbles by buoyancy prior to returning the water to the pumps. A curved water path within

these tanks helps in separating the bubbles, and provides ample time for the bubbles to rise to the free surface of the

upper tank, which is open to the atmosphere. Thus, flow conditions upstream of the channel are the same with or

without bubble injection.

To measure the channel wall vibration, an aluminum flat plate, with a length of 1 m, a width of 0.15 m and a

thickness of 6.25 mm, is embedded in one of the test channel walls, flush with the internal surface. As illustrated in

Fig. 1(b), the plate is mounted between thick rubber gaskets, which isolate it and prevent any direct contact with other

rigid components. The mounting screws pass through oversize holes in the Lucite frame of the channel, and the only
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contact that the plate has with the frame is through the thick rubber gaskets, isolating it from frame vibrations.

Consequently, the bubbly flow provides most of the plate excitation. Comments on how well the present isolation

system works are provided in Pelletier et al. (2006). When we hit the hoses or settling camber, traces of several damped

spectral peaks appear in the signals of the accelerometers mounted on the test plate. However, all of these peaks appear

well below 200 Hz, while the enhanced vibrations shown in the next section and the analysis that follows occur at higher

frequencies. Below 200 Hz, introduction of bubbles has little impact on the vibrations. The vibrations are measured

using four low-noise Kistler accelerometers (Model 8784A5) with a sensitivity of 1.035 V/g. These accelerometers are

attached along the midline of the plate in the streamwise direction using a cyano-acrylate adhesive, as shown in

Fig. 1(c). They are located 0.127, 0.372, 0.607 and 0.797 m from the plate leading edge and are referred to in this paper

as accelerometers 1, 2, 3 and 4, respectively. In addition, wall pressure fluctuations are measured at two locations using

two flush-mounted, 2.5 mm diameter, Endevco miniature piezoresistive pressure transducers (Model 8510B-1) that have

a sensitivity of 2.9� 10�5 V/Pa. These sensors are installed near accelerometers 1 and 2, and referred to as transducer

nos. 1 and 2, respectively (see Fig. 1(c)). To conveniently describe the location in the channel, a coordinate system is

used with x, y in the horizontal plane and z in the streamwise direction, and the origin placed at one corner of the

channel (Fig. 1(d)).

The flow is seeded with bubbles by injecting a supersaturated solution of carbon dioxide (CO2) and water into the

settling chamber. A similar technique was used by Martı́nez-Baz�an et al. (1999). As illustrated in Fig. 2, to obtain

saturated water at high pressure, the water is sprayed into a CO2 filled chamber, which is kept at a pressure of 1.7 MPa.

The resulting saturated solution is injected through an array of stainless steel porous tubes located in the settling

chamber. Each tube is 0.35 m long, and has an inner diameter of 3.2 mm, an outer diameter of 9.6 mm and a pore size of

0.2 mm. Due to the pressure drop across the porous wall of the tubes, the dissolved CO2 becomes supersaturated,

causing nucleation of bubbles, which are entrained by the water. Subsequent mixing with the main water flow along

with introduction of surfactants in some cases (see below) greatly reduces the likelihood of coalescence of the bubbles.

The main characteristics of the CO2 bubble cloud, i.e., bubble diameter (d) and volumetric void fraction (v), are

controlled and measured, as described below. The present measurements and analysis are restricted to steady flow

conditions and low void fractions, less than 2.34%, and bubbles in the 0.37–1.2 mm range, although we have performed

preliminary measurements at higher concentrations and with larger bubbles (Pelletier et al., 2006). The bubble diameter
Fig. 2. The bubble generator and injector.
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is regulated by adding a surfactant (Pentanol-3) to the flow, at concentrations of 0, 6 and 12 ppm. The surfactant

reduces bubble surface tension and inhibits coalescence with a minimal effect on liquid viscosity (Shen et al., 2006). The

corresponding most abundant bubble diameters are 1.20, 0.69 and 0.37 mm, as illustrated by the typical magnified

images in Fig. 3. At low concentration, varying the injection rate of supersaturated liquid has little effect on the

characteristic bubble size. The bubble sizes are measured by illuminating a small sample area, 10 mm� 10 mm,

of the flow field with a 6.0 mm thick, 120 mJ/pulse, Nd:YAG laser sheet. The illuminated central plane is aligned with

the streamwise direction and perpendicular to the test plate. The flow is seeded with fluorescent dye (Rhodamine-WT),

which essentially converts the entire illuminated plane to a light source. Bubbles passing through this plane becomes

clearly visible, permitting accurate measurements of their sizes. Since the wavelength of the green laser light is smaller

than that of yellow fluorescent light, a high-pass optical filter is positioned in front of a camera to block the laser light,

but allowing the light reflected from bubbles to pass. Images are recorded using a 2 k� 2 k pixels CCD camera, which is

synchronized with the laser.

Bubble sizes are measured automatically using blob analysis software developed specifically for this purpose, which

provides the size distribution of bubbles in each image. The bubble size distribution measurements have been conducted

at two sections, near accelerometers 1 and 4, along lateral directions. Fig. 4 compares the typical bubble size

distributions. For each section, the bubble images are recorded at three lateral locations, corresponding to 38 mm from

test plate, middle of the channel and 38 mm from the channel wall opposite to the plate. We have not seen any

statistically significant differences in bubble size distributions across the channel, and consequently only show in Fig. 4

sample histograms of size distributions for the section located closest to the channel wall near accelerometers 1 and 4.

As is evident, in all cases, there is a dominant bubble size, which we use this to define the characteristic diameter.

Although the fraction of bubbles with that specific size decreases slightly along the channel, presumably due to

coalescence, the same diameter still dominates over the entire channel. The same conclusion applies to all bubble sizes

and void fractions, including those not shown here. These results suggest that the spatial distribution of bubbles in the

test channel is very nearly uniform, and we will assume so for the analysis that follows.

To estimate v, we assume that all bubbles move uniformly in the test channel and the time for bubbles filling the

square channel with length L and width W can be expressed as t¼L=ðUw þUslipÞ, where Uw is the mean flow velocity of

water and Uslip the buoyancy-induced slip velocity between bubbles and water. Then, the volume of CO2 bubbles in the

channel is QCO2
L=ðUw þUslipÞ, where QCO2

is the volumetric flow rate of CO2. Thus, the void fraction is

v¼
QCO2

UwW 2 þUslipW 2
: ð1Þ

The mean flow velocity of water Uw is measured using an ultrasonic Doppler flow meter, Dynasonics 901 (uncertainty

�2%), attached to the pipe downstream of the facility. To estimate Uslip, we assume that the buoyancy of an individual

bubble is balanced by the drag force, giving Uslip ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4dg=3CD

p
. Here, CD is the drag coefficient, calculated using

CD ¼ 24ð1þ 0:15Re0:687Þ=Re (Schiller and Nauman, 1933; Sridhar and Katz, 1995), where Re¼Uslipd=n. The value of

QCO2
can be estimated from a mass balance of CO2 injected into the facility (Merkle and Deutsch, 1992), taking

advantage of the fact that the water prior to injection of CO2 is saturated. Using ideal gas laws as well as solubility of
Fig. 3. Typical images of bubble clouds for varying characteristic bubble diameters (d): (a) d=1.20 mm; (b) d=0.69 mm and

(c) mostly d=0.37 mm. White scales are 1 mm.
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CO2 as a function of pressure and temperature, and assuming thermodynamic equilibrium,

QCO2
¼ 1000QinjrwC20o

1:7MPaRT=P½ð1�C20�

1:7MPaÞMH2O þ C20�

1:7MPaMCO2
�; ð2Þ

where Qinj stands for the injection rate of saturated water at 1.7 MPa through the porous tubes, rw is the density of

water, C20�

1:7 MPa ¼ 0:012 (Carroll et al., 1991) the mole fraction of saturated CO2 at 1.7 MPa and 20 1C, R is the universal

gas constant (=8.31 m3 Pa K�1 mol�1), T is the absolute temperature, M is the molecular weight and P is the mean

pressure in the channel at the exit from the porous tubes (P¼ Pa þ rwgh, Pa is the atmospheric pressure and h is the

distance from porous tubes to the free water surface). In this paper, three low void fraction cases, i.e., v=0.64%, 1.15%

and 2.29%, are investigated.

One can also estimate the gas volume fraction by counting the bubbles passing through the 6 mm thick light sheet.

We have compared results obtained in this way with those obtained using mass balance. The results fall within 20% of

the estimation based on mass balance, providing reasonable support for using the former in this paper.
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3. Effect of internal bubbly flow on plate vibration

Experiments were first conducted to investigate the effect of flow velocity on the plate acceleration in order to obtain

a baseline database without bubbles. Each data set was recorded at 70 kHz for 15 s. For analysis, data were divided into

segments and the frequency content of each one was calculated using Matlab-based fast Fourier transform (FFT) after

removing mean values and detrending (see e.g. Emery and Thomson, 1997). The resulting spectra were averaged.

Examples of such averaged power spectral densities at two typical velocities of 1 and 2 m/s are presented in Fig. 5(a).

The vibrations at 2 m/s are at most 25 dB higher than the no-flow case (i.e., the noise level of the sensor), while those at

1 m/s are only 15 dB higher than the base level. In the present paper, mostly for convenience, we focus on the effect of

bubbles at 1 m/s flow velocity, i.e., Reynolds number based on channel width and pure water viscosity of 1.45� 105.

Earlier data at higher velocity are similar and can be found in Pelletier et al. (2006). There are two prominent peaks, one

around 700 Hz and the other around 2820 Hz. The normal modes of a simply supported plate are given by (see e.g.

Genta, 1999)

f ðn1 ;n2Þn ¼
p
2

n1

Lal

� �2

þ
n2

Wal

� �2
" # ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EalH
2
al

12ralð1�u
2
alÞ

s
; n1; n2 ¼ 0; 1; 2. . .; ð3Þ
Fig. 5. Power spectral density of plate acceleration, as measured by accelerometer 3: (a) effect of flow velocity with no bubble injection;

(b) impulse frequency response of the plate for air and for still water with and without bubbles. The bubble void fraction v is 0.64%.

n1=0 or 1.
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where Lal and Wal are the length and width, Hal the thickness, Eal Young’s modulus, ral density and ual the Poisson

ratio of aluminum. Values of n1 and n2 refer to the order of the longitudinal and spanwise modes of the plate,

respectively. Some results calculated from this relation are presented in Table 1. This equation is not directly applicable

to our situation because it ignores the loading of the water on the plate. To investigate the effects due to this aspect of

the problem, we measured the plate impulse response by hitting it while the facility contained air, still water and still

water with bubbles of various sizes and the same v=0.64%. These results are shown in Fig. 5(b), where it is seen that

the peaks in air occur at a higher frequency than in water, as expected. From the results of Table 1, the measured peaks

in air are close to the modes (0,1), (1,1) and (0,2), (1,2). Although we do not use here an analogous formula for bubbly

water, it appears more than likely that the peaks measured with pure or bubbly water correspond to the same modes.

It should be noted that these results, with standing water, are very close to the analogous ones with flowing water shown

in Fig. 5(a). The vibrations of the same plate mounted in a somewhat different set-up (the same channel, but without

bubbles), were measured by Gopalan et al. (2002) who characterized the vibrations as well damped. Based on the results

in Fig. 5b, the damping coefficient is about 0.1 at 500 Hz.

After these preliminary measurements, we systematically investigated effects of void fraction v and characteristic

bubble diameter d on the plate vibrations. Fig. 6 displays typical spectra of accelerometer 1 for the same d (0.69 mm),

demonstrating the effect of v on the plate acceleration. Obviously, even at as low a void fraction as v=2.29%, the plate

vibrations are strongly enhanced by up to 27 dB, compared to the flow without bubbles, over a broad frequency range,

but especially above 250 Hz. The corresponding overall rms value of the plate acceleration, presented in Table 2,
Table 1

Plate mode frequencies (f ðn1 ;n2Þn ) estimated using Eq. (3), and bubble natural frequencies (f d
0 ) estimated using Eq. (4).

f ð0;n2Þn f ð0;1Þn f ð0;2Þn f ð0;3Þn f ð0;4Þn f ð0;5Þn

(kHz) 0.67 2.7 6.1 10.8 16.9

f ð1;n2Þn f ð1;1Þn f ð1;2Þn f ð1;3Þn f ð1;4Þn f ð1;5Þn

(kHz) 0.69 2.8 6.4 11.0 17.7

f d
0 f 1:2

0 f 0:69
0 f 0:37

0

(kHz) 4.6 8.0 15.6

Fig. 6. Sample power spectral densities of plate acceleration, as measured by accelerometer 1, for the same characteristic bubble

diameter (d=0.69 mm) but different void fractions (v). n1=0 or 1.



Table 2

Typical overall rms values of the plate accelerations for different void fractions v but the same bubble diameter d=0.69 mm and for

different d but the same v=0.64%.

d=0.69 mm No bubbles v=0.64% v=1.15% v=2.29%

rms (m/s2) 0.0035 0.0236 0.0337 0.0529

v=0.64% No bubbles d=0.37 mm d=0.69 mm d=1.20 mm

rms (m/s2) 0.0035 0.0223 0.0236 0.0307

Fig. 7. Sample power spectral densities of plate acceleration, as measured by accelerometer 1, for the same void fraction (v=0.64%)

but different characteristic bubble diameters. n1=0 or 1.
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reaches 15.1 times that without bubbles. The peak near the mode frequency of the plate (f ðn1 ;1Þn , n1=0 or 1) becomes

invisible in the spectra of bubbly flows, suggesting that the enhancement of the vibrations is not associated with these

modes. Note that several peaks appear within the 250–1200 Hz frequency range. As we show later, the frequencies of

these peaks match the acoustic mode frequencies of the bubbly channel. In addition, two phenomena can be readily

noted. First, increasing v significantly increases the intensity of vibrations. Second, with increasing v, the left-most

spectral peak (e.g. at �250 Hz for v=2.29%) moves to a lower frequency.

The plate response in the low frequency range, i.e., less than 200 Hz, is little dependent on the bubbles. We have

devoted a considerable effort to this frequency range by repeatedly measuring the vibrations and we can assert with

confidence that the introduction of bubbles has little impact on this spectral range. On the basis of impulsive excitation

of different parts of the facility, we believe that these low-frequency vibrations are dominated by the vibrations of the

flexible hoses in the facility. The effect of bubbles is mostly manifested in the 250–1200 Hz range and, to a lesser extent,

higher frequencies.

Fig. 7 presents typical examples demonstrating the effect of bubble diameter d on the acceleration spectra for

v=0.64%, as measured by accelerometer 1. Compared with the no-bubble case, the acceleration of the plate vibration

above 250 Hz increases by up to 20 dB, and the overall maximum rms value, measured for d=1.20 mm, is augmented

8.8 times. Although the plate vibration increases with increasing d, as the rms values indicate, this trend does not persist

over the entire frequency range. Furthermore, the spectral peaks do not seem to shift significantly with varying d.

Evidently, the effect of d is much less than that of v. In evaluating the implication of this trend, note that the natural
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frequency (f d
0 ) of the largest bubble in the present study exceeds 4.6 kHz, i.e., higher than the frequency range presented

in Figs. 6 and 7, where the effect of introducing bubbles on plate vibrations is most prominent. The analysis in the

following sections of this paper focuses on explaining and modeling phenomena occurring in this range.
Fig. 8. Effect of bubble characteristic diameter d on the power spectral density of plate acceleration, as measured by accelerometer 1,

with spectra extending to high frequency range: (a) v=0.64%; (b) v=1.15%; and (c) v=2.29%. n1=0 or 1.
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However, it would be instructive to examine briefly a wider frequency range that includes natural frequencies, f d
0 , of

individual bubbles, where the superscripts indicate bubble diameter. Neglecting effect of surface tension, the natural

frequency f0 can be estimated using (Plesset and Prosperetti, 1977)

f d
0 ¼

1

pd

3kPa

rw

� �1=2

; ð4Þ

where k is the polytropic index (=1 for the presently assumed isothermal case). Values of f d
0 for the present study are

also presented in Table 1. Extending the range of the spectra from 3 to 20 kHz, Fig. 8 shows typical accelerometer 1

results for different v and d. Several additional broad peaks emerge in the extended frequency range, but they are much

weaker than those appearing in the 250–1200 Hz range. For the same d, the magnitudes of the high frequency peaks

increases with void fraction. In these figures, the natural frequencies of individual bubbles, 4.6, 8.0 and 15.6 kHz (Eq. 4)

for d=1.20, 0.69 and 0.37 mm, respectively, are labeled as f 1:2
0 , f 0:69

0 and f 0:37
0 . In some cases, there are distinct spectral

peaks close to the bubble natural frequency, e.g. f 0:69
0 , and in other cases, they are less obvious, e.g. f 1:2

0 at the low void

fractions. The plate mode frequencies, labeled as f ðn1 ;2Þn , f ðn1 ;3Þn , f ðn1 ;4Þn and f ðn1 ;5Þn , with n1=0 or 1, as estimated using

Eq. (3) and summarized in Table 1, are also indicated. In some cases, but not in all of them, there is a spectral peak close

to the mode frequency. There are also spectral peaks that do not match either group.

The results in Fig. 8 and Table 1 show that there is little match between the natural frequencies of individual bubbles

and the plate modes, most of which are at a significantly lower frequency. However, the fact that vibrations at (some of

the) plate mode frequencies are associated with the presence of bubbles indicates that there is a mechanism capable of

transferring excitation energy to the plate. One possibility involves enhancement of turbulence by the bubbles, which in

turn excites the plate, as discussed in the next section. However, there is another mechanism capable of transferring the

bubble acoustic energy from high to low frequencies. A similar situation is encountered when oceanic ambient noise is

produced by breaking waves at a much lower frequency than that of individual bubbles (Oĝuz, 1994; Tkalich and Chan,

2002). The current understanding of this phenomenon relies on the damping of the single-bubble oscillations, which

broadens the bubble frequency peaks, and confers to their acoustic emission a significant width capable of overlapping

with neighboring plate modes. In view of the much lower sound speed in a bubbly liquid, the radiation damping of

bubble oscillations may be expected to increase (see Eq. (11) and discussion below). Furthermore, since bubbly liquids

are strong acoustic absorbers, the width of the plate modes may also be significantly broadened. Clearly, our present

attempt to correlate the co-occurrence of bubble and plate resonances as a result of broadening of spectral peaks is

speculative at this point and requires considerable more analysis and testing. Considering the complexity involved, and

the smaller magnitude of these peaks, we defer such an analysis to future work. Our modeling effort focuses on the very

large peaks in the 250–1200 Hz range.
4. Streamwise evolution of plate vibration and associated wall pressure fluctuation

Representative vibrations and pressure fluctuations spectra for each accelerometer and pressure transducer are

presented in Figs. 9–12; Figs. 9 and 10 showing data for v=0.64% and 2.29% while keeping d=1.20 mm, and Figs. 11

and 12 comparing data for d=0.37 and 1.20 mm, while keeping v=1.15%. Starting with the sensors located closest to

the origin of the bubbles, several distinct peaks are evident in the spectra presented in Figs. 9(a)–12(a). They are marked

and referred to as f mn
d;v . Here, the subscripts refer to bubble diameter and void fraction, and the superscripts m and n

represent different acoustic bubbly channel modes, m in a direction perpendicular to the plate (x direction), and n

parallel to it (y direction). These designations are used for comparisons with model predictions, as described in the next

section. As is evident from comparing Figs. 9(a)–10(a), and Figs. 11(a)–12(a), for the same d and v, the frequency of

spectral peaks of acceleration and pressure are very similar.

However, the strong/distinct peaks of accelerometer 1 and transducer 1 decay in the streamwise direction at rates that

seem to vary with void fraction, characteristic bubble diameter and mode frequency. The peaks in spectra of

accelerometers 2–4 and transducer 2 are clearly smaller. Keeping the same diameter and same mode, the acceleration

spectral peaks decay faster with decreasing void fraction, e.g. those at v=0.64% compared to those at v=2.29%

(Fig. 9). For example, the f 11
1:2;0:64%peak decreases by 22.8% from accelerometer 1 to accelerometer 4, while f 11

1:2;2:29% only

decreases by 2.5% (Figs. 9(a) and (d)). Second, for the same void fraction and same mode, the peaks decay faster with

decreasing bubble diameter, e.g. for d=0.37 mm bubbles compared that d=1.20 mm case (Fig. 11). For example, the

magnitude at f 11
0:37;1:15% decreases by 22.6% from accelerometer 1 to accelerometer 4, while f 11

1:2;1:15% decreases by 12.5%

(Figs. 11(a) and (d)). Third, for the same v and d, the peak diminishes more quickly with increasing frequency, a trend



Fig. 9. Power spectral densities of plate acceleration for d=1.20 mm but different void fractions, as measured by accelerometers: (a) no. 1; (b) no. 2; (c) no. 3; (d) no. 4. n1=0 or 1.
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Fig. 10. Power spectral densities of wall-pressure fluctuations for d=1.20 mm, but at different void fractions, as measured by pressure

transducer: (a) no. 1; (b) no. 2. n1=0 or 1.
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that is particularly obvious by comparing accelerometer 1 spectra to those at other locations (Figs. 9 and 11). Very

similar decay trends can also be observed by comparing the spectra of the two pressure transducers (Figs. 10 and 12).

In observing the formation of spectral peaks, one wonders what is the energy source for the substantial increase in

plate vibrations, and their trends with void fraction. A first possibility is an increase in turbulence level in the bubbly

flow, as reported in several studies, e.g. Lance and Bataille (1991) and Shawkat et al. (2007). Although it is reasonable to

expect that the elevated turbulence would contribute to increased vibrations, the observed decay of spectral peaks along

the channel is inconsistent with a primary role for this mechanism. Since the spatial distribution of bubbles does not

change significantly along the channel, their effect on the local turbulence should also not change appreciably. Yet, the



(a) (b)

(c) (d)

Fig. 11. Power spectral densities of plate acceleration for the same void fraction, v=1.15%, but different characteristic bubble diameters, as measured by accelerometers: (a) no. 1;

(b) no. 2; (c) no. 3; (d) no. 4. n1=0 or 1.
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Fig. 12. Power spectral densities of wall pressure fluctuations for the same void fraction, v=1.15%, but for different bubble diameters,

as measured by transducers: (a) no. 1 and (b) no. 2. n1=0 or 1.
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spectral peaks in the 300–1200 Hz range clearly decay, strongly suggesting that the origin of acoustic energy is located

close to the entrance to the channel, and that this energy is attenuated while propagating through the channel. We

believe that the acoustic energy is introduced by the process of bubble generation upstream of the channel. This

hypothesis is strengthened by the fact that both the frequency and decay rate of these peaks can be predicted, as

discussed in the following section.

The similarity between pressure and vibrations signals motivates us to examine the correlations among them. The spectral

coherenceFp0u0 between simultaneously measured acceleration and pressure data are calculated using (Storch and Zwiers, 1999)

Fp0u0 ðf Þ ¼
fp0u0 ðf ÞUfp0u0*ðf Þ

fp0p0 ðf ÞUfu0u0 ðf Þ
; ð5Þ
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where fp0u0 ðf Þ is the cross-spectrum between pressure and acceleration signals and the asterisk indicates its complex conjugate,

while fp0p0 and fu0u0 are time averaged auto-spectra of pressure and acceleration, respectively. Fig. 13(a) displays typical results

for different v but the same d=1.20 mm, and Fig. 13(b) compares results for different d but the same v=1.15%, both using

accelerometer 2 and pressure transducer 2 data. Clearly, before introducing bubbles, the coherence is very small at all

frequencies. After introducing bubbles, the coherence at most mode frequencies, irrespective of void fraction and bubble size,

increases well beyond 0.5, confirming that the same phenomena cause both the wall pressure fluctuations and vibrations. In the

following section we identify their origin.
Fig. 13. Spectral coherence between plate vibrations, as measured using accelerometer 2, and wall pressure fluctuations, as measured

using pressure transducer 2. Plots compare data for: (a) the same diameter (=1.20 mm), but different void fractions, and (b) the same

void fraction (=1.15%) but different diameter.
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5. Modeling the bubbly channel acoustic modes

To model the observed spectral modes and decay trends along the channel, we assume that the sound is originating

from the process of bubble growth and detachment inside the settling chamber. When the supersaturated water at

1.7 MPa is injected into the settling chamber at 0.1 MPa, the bubbles grow rapidly and this process is accompanied by a

strong acoustic emission. This acoustic energy is radiated into the bubbly medium with the channel walls acting as

waveguides and, at the same time, excites the channel wall vibrations. To validate this hypothesis, we have constructed a

model based on the infinite rigid waveguide theory (Rschevkin, 1963; Kinsler et al., 1982). This choice is justified for

two reasons: First, the boundary conditions at the plates can be approximated as rigid due to the large impedance

difference between plate and bubbly liquid. Second, even though the channel has a finite length, the strong attenuation

of the acoustic waves makes this fact immaterial.

Fig. 1(d) shows a schematic of a long rigid channel with a square cross-section W�W. Consistent with the above

assumptions, a fluctuating pressure field, p0ðx; y; z; tÞ ¼ pðx; y; zÞeiot, due to the process of bubble formation inside the

settling chamber, excites the flow at the channel entrance z=0. This pressure field satisfies the Helmholtz equation

(Rschevkin, 1963; Commander and Prosperetti, 1989):

r2pþ k2
mp¼ 0; ð6Þ

where km ¼o=cm is the wavenumber in the bubbly flow that has a sonic speed of cm. Note that we do not include a

source term since the acoustic source is located outside of our modeling domain. The acoustic source is located in the

settling chamber upstream of the entrance to the channel, and sound propagates into our domain through the bottom

boundary. Our modeling focuses on the identification of acoustic modes associated with sound propagation through the

bubbly medium in the channel. Since we assume that the walls of the channel are rigid,

@p

@x

� �
x ¼ 0

¼
@p

@x

� �
x ¼W

¼
@p

@y

� �
y ¼ 0

¼
@p

@y

� �
y ¼W

¼ 0; ð7Þ

the solution to Eq. (6), subject the above boundary conditions, is

p0ðx; y; z; tÞ ¼
X1

m ¼ 0

X1
n ¼ 0

Amn coskxxcoskyyeiðot�kzzÞ; m; n¼ 0; 1; 2; . . . ð8Þ

where

kx ¼
mp
W

; ky ¼
np
W
; kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

m�k2
x�k2

y

q
; ð9Þ

and Amn is the amplitude of the individual modes. Following Commander and Prosperetti (1989) and Lu (1990), the

wavenumber km satisfies the dispersion relation

k2
m ¼

o2

c2m
¼

o2

c2
þ

12vo2

d2ðo2
0�o

2 þ 2iboÞ
; ð10Þ

where c is the sonic speed in pure water, o0 the angular frequency of an individual bubble (o0 ¼ 2pf d
0 , Eq. (4)) and b the

effective damping constant of individual bubble oscillation; b is given by

b¼
8m
rwd2

þ
2p

rwd2o
Imfþ

o2d

4c
; ð11Þ

where m is the viscosity of water, and f is a complex function, defined in Prosperetti (1977):

f¼
3g

1�3ðg�1Þiw½ði=wÞ0:5 cothði=wÞ0:5�1�
: ð12Þ

Here, g is the ratio of specific heats for the gas in the bubble, w¼ 4DCO2
=od2, and DCO2

is the thermal diffusivity of

CO2. Evidently, cm and consequently km and kz are complex due to the presence of damping term b in the denominator

of Eq. (10), which includes contributions of viscous, thermal and acoustic dissipation. Therefore, kz can be expressed as

kz ¼ a�bi; ð13Þ
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and Eq. (8) can be rewritten as

p0ðx; y; z; tÞ ¼
X1

m ¼ 0

X1
n ¼ 0

Amn coskxxcoskyye�bzeiðot�azÞ: ð14Þ

The values of b, i.e., the streamwise decay rate of the sound in the channel, can be calculated using Eqs. (9)–(13).

Note that Commander and Prosperetti (1989) use c=cm ¼ q�ir, and consequently, b¼or=c. For a certain mode, (m, n),

the spatial distribution of amplitude is

pmnðx; y; zÞ ¼ 9Amn coskxxcoskyy9e�bz: ð15Þ

Thus, for given boundary conditions, d, v, fluid and gas properties as well as location in the bubbly channel, pmn is

only a function of o. Due to its dependence on b, for each mode, there is a frequency for which b is minimal, and

therefore pmn is maximum. This frequency can be calculated from the above equations. In practice, the sound decay rate

along the channel is often expressed as an attenuation coefficient (Commander and Prosperetti, 1989),

A¼
10log10½pmnðz1Þ=pmnðz2Þ�

2

z2�z1
¼ 20b log10ðeÞ: ð16Þ

Based on Eq. (16), the present attenuation coefficients are measured using the ratio of mean magnitudes of two

accelerometer signals (or two transducer signals) for each frequency, as well as the distance between the two sensors.

Therefore, this model enables us to calculate the normal mode frequencies, f mn
d;v , of sound propagation in the channel

and their corresponding attenuation coefficient. It also permits the calculation of the phase velocity, V, for each mode

(Commander and Prosperetti, 1989)

V ¼ 1=Re
1

cm

� �
¼

c

q
: ð17Þ

Since the phase speed can be measured, as described below, results can be compared to the model predictions. Measured

and calculated values of the mode frequencies, attenuation coefficients and phase speeds are compared in Tables 3 and 4, the
Table 3

Comparisons of typical measured and calculated mode frequency f mn
d;v , attenuation coefficient A and phase speed V, for the same

characteristic bubble diameter d=1.20 mm but different void fraction v.

Void fraction

v=0.64% v=2.29%

Mode frequency f 10
1:2;0:64% f 11

1:2;0:64% f 20
1:2;0:64% f 12

1:2;0:64% f 10
1:2;2:29% f 11

1:2;2:29% f 20
1:2;2:29% f 12

1:2;2:29% f 22
1:2;2:29% f 30

1:2;2:29% f 32
1:2;2:29%

Calculated f mn
d;v (Hz) 518 717 959 1052 276 389 539 597 754 796 939

Measured f mn
d ;v from

accelerometer data (Hz)

500 665 866 1025 254 400 506 580 707 793 917

Measured f mn
d ;v from transducer

data (Hz)

525 690 840 1050 260 340 493 545 647 795

Calculated A (dB/m) 4.08 7.82 10.30 11.72 2.18 4.24 5.79 6.66 8.11 8.87 10.99

Measured A from

accelerometer data (dB/m)

3.67 8.16 9.32 11.18 1.83 3.86 5.26 5.81 7.34 8.64 10.16

Measured A from transducer

data (dB/m)

4.01 8.03 9.47 10.59 1.82 4.12 5.17 5.92 7.31 8.46

Calculated V (m/s) 123.9 123.2 121.9 121.4 66.0 65.9 65.7 65.5 65.2 65.1 64.7

Measured V from

accelerometer data (m/s)

124 111.5 113.4 109.9 68.2 66.0 64.4 59.0 58.9 55.9 54.5

Measured V from transducer

data (m/s)

125.8 122.3 112.8 118.8 61.2 63.8 64.4 58.3 56.3 59.3



Table 4

Comparisons of typical measured and calculated mode frequency f mn
d;v , attenuation coefficient A and phase speed V, for the same void

fraction v=1.15% but different characteristic bubble diameter d.

Diameter

d=0.37 mm d=1.20 mm

Mode frequency f 10
0:37;1:15% f 11

0:37;1:15% f 20
0:37;1:15% f 12

0:37;1:15% f 10
1:2;1:15% f 11

1:2;1:15% f 20
1:2;1:15% f 12

1:2;1:15% f 22
1:2;1:15%

Calculated f mn
d;v (Hz) 408 549 746 834 384 522 699 770 991

Measured f mn
d;v from accelerometer data (Hz) 422 600 818 935 399 524 635 718 870

Measured f mn
d;v from pressure transducer

data (Hz)

410 565 801 925 405 503 602 740 860

Calculated A (dB/m) 4.86 8.19 12.38 14.28 4.10 5.90 7.94 9.07 10.97

Measured A from accelerometer data (dB/m) 4.31 8.4 11.51 14.62 3.56 4.89 7.44 8.57 9.82

Measured A from pressure transducer data

(dB/m)

4.12 8.68 12.43 14.95 3.61 5.19 7.11 8.10 10.37

Calculated V (m/s) 93.3 93.3 93.3 93.3 92.9 92.6 92.1 91.9 91.0

Measured V from accelerometer data (m/s) 99.2 98.0 97.7 98.8 89.6 82.8 81.2 82.1 83.5

Measured V from transducer data (m/s) 92.0 82.7 88.6 95.6 89.9 83.9 81.1 83.7 90.6
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first for a fixed characteristic bubble diameter (d=1.20 mm) and varying void fraction, and the second for a fixed void

fraction (v=1.15%) and varying diameter.

In the present analysis, we assume an infinitely long channel by ignoring the possibility of reflected waves. This

assumption can be supported by noting that the total length of the channel is 2 m, but the tube carrying the bubbly

liquid to the storage tank is at least 3 m longer. With attenuation coefficients varying between 4 and 12 dB/m, i.e., the

amplitude of a reflected wave in the storage tank would be weaker than the original wave by 20–60 dB, namely a factor

of 10–1000, respectively. Consequently, it is reasonable to assume that the channel is infinitely long.
6. Comparisons of modeled and measured trends

We start by comparing the measured and modeled phase velocity. The phase velocity corresponding to f mn
d;v , can be

estimated from the experimental data using

V ¼
2pf mn

d;v Dz

y
; ð18Þ

where y is the phase shift at f mn
d;v between two simultaneously measured accelerometer or transducer signals, numbers 1

and 2 in the present analysis. The values of y can be calculated using (Storch and Zwiers, 1999)

y¼ tan�1
Im½fp0ðz2Þp0ðz1Þ

ðf Þ�

Re½fp0ðz2Þp0ðz1Þ
ðf Þ�
þ 2Np: ð19Þ

Here Re½fp0 ðz2Þp0ðz1Þ
ðf Þ� and Im½fp0ðz2Þp0ðz1Þ

ðf Þ� are the real and imaginary parts of the time averaged cross-spectrum of

pressure signals (the same applies to vibration signals) and N is an integer, needed when the distance between sensors is

larger than the wavelength. We have used the data of both pressure and vibrations transducers to measure the phase

velocity, and results are compared to the model predictions in Fig. 14, as well as in Tables 3 and 4. As is evident,

differences between modeled and measured speeds are for most cases less than 10%, a clear agreement considering the

approximated method used for measuring the sound speed, and the (expected) substantial difference between results

and the speed of sound in pure water. Trends with void fraction and bubble diameter also agree, although the measured

effect of changing diameter is larger than modeled trends.

Comparisons between modeled and measured mode frequencies and attenuation coefficients are presented in Figs. 15

and 16 and tabulated in part in Tables 3 and 4. Clearly, for all the modes and both sensors, the modeled and measured

f mn
d ;v and A as well as their trends with diameter and void fraction are very close to each other. Due to the consistent close



v model data
0.64% o

Δ1.15%
2.29%

d (mm) model data
0.37 +
0.69 *
1.2

Fig. 14. Comparisons of typical measured (symbols) and calculated (lines) phase speed at different mode frequencies for (a) the same

characteristic bubble diameter, d=1.20 mm, but different void fractions, (b) the same void fraction, v=1.15%, but different

bubble diameters. Accelerometer and pressure transducer results use the same symbol since the difference between them is very

small.
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agreement between the transducer and accelerometer values, there is not even a reason to use different symbols for

them. Thus, we opt to present the data using the same symbols to improve the clarity of these figures. Several trends can

be observed from the results as follows.
(i)
 Figs. 15(a) and 16(a) demonstrate that for the same bubble diameter, 1.2 mm in the shown example, both the mode

frequency and attenuation coefficient decrease significantly with increasing void fraction. The same trends persist

for the other diameters (not shown).



mode 1.0 1.1 2.0 1.2 2.2 3.0 3.2
model

data + o

mode 1.0 1.1 2.0 1.2 2.2
model
data + o

Fig. 15. Comparisons of measured (symbols) and calculated (lines) mode frequencies for (a) the same bubble diameter, d=1.20 mm,

but different void fractions, (b) the same void fraction, v=1.15%, but different bubble diameters. Accelerometer and pressure

transducer results use the same symbol since the difference between them is very small.
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(ii)
 Figs. 15(b) and 16(b) show that for the same void fraction, 1.15% in the shown example, both the mode frequency

and attenuation coefficient decrease with increasing bubble diameter. Again, these trends persist for

the other void fractions (not shown). However, the effect of bubble diameter on the mode frequency is very

weak, much weaker than the impact of void fraction, as mentioned before while examining the spectra in

Figs. 9–12.
(iii)
 For the same void fraction and/or diameter, the attenuation coefficient increases with increasing mode number. In

other words, in the 250–1200 Hz range, the decay rates of the wall pressure fluctuations and vibration accelerations

increase with increasing frequency. Consequences of this trend are evident by comparing spectra of accelerometers

1–4 and transducers 1–2. Similar trends of decay are predicted by a model developed by Lu (1990) for a comparable

range of d and v, but for an one-dimensional bubbly layer in an infinite medium.



mode 1.0 1.1 2.0 1.2 2.2 3.0 3.2
model

data + o

mode 1.0 1.1 2.0 1.2 2.2
model
data + o

Fig. 16. Comparisons of measured (symbols) and calculated (lines) attenuation coefficients for (a) the same characteristic

bubble diameter, d=1.20 mm, but different void fraction, (b) the same void fraction, v=1.15%, but different bubble

diameter. Accelerometer and pressure transducer results use the same symbol since the difference between them is very small.
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7. Summary and conclusions

This paper examines the characteristics of channel wall vibrations induced by internal bubbly flow as well as the physical

phenomena causing them. Measurements of channel wall vibrations and wall pressure fluctuations at several locations, void

fractions and bubble diameters are followed by developing a mathematical model for the observed trends.

Introduction of bubbles, even at low void fractions, enhances the power spectral density of the channel wall

vibrations in the 250–1200 Hz range by up to 27 dB, and the overall rms value of vibrations by up to 14.1 times,
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compared with no bubble case. For the same frequency range, the wall pressure fluctuations increase by up to 26 dB,

and the overall rms value by up to 12.7 times. In frequency ranges that are lower than the resonant frequency of

individual bubbles, the intensity of vibrations and frequency of spectral peaks vary substantially with void fraction, and

to a lesser extent with bubble size. Additional weaker spectral peaks develop at higher frequencies, in some cases (but

not always) close to the plate modes and/or at the resonant frequencies of individual bubbles. Possible mechanisms are

discussed briefly, including enhancement of turbulence in the bubbly flow, which, in turn enhances the vibrations, as

well as excitation of plate modes by acoustic energy produced by bubbles. Further studies will focus on this range.

For the spectral peaks detected in the 300–1200 Hz range, the origin of enhanced vibrations and wall pressure

fluctuations by bubbles is traced back to the generation of bubbles in the facility, which provides the energy source for

subsequent processes. This energy propagates along the channel, excites specific channel modes, and interacts with the

bubbly medium. A model based on waveguide theory, i.e., a solution to the 3-D Helmholtz equation in an infinitely long

channel, and the physical properties of bubbles, is used to predict the frequency of spectral peaks and their attenuation

coefficients. These peaks correspond to the frequency of least attenuated channel modes.

The trend of the mode frequencies, and corresponding attenuation coefficients and phase velocities with void

fraction, bubble diameter and frequency are well predicted by the model. For the same mode, the smaller the void

fraction and bubble diameter, the higher the mode frequency, phase velocity and decay rate. However, the effect of

bubble diameter on these trends is much weaker than that of the void fraction. For the same void fraction and bubble

diameter, the higher the mode frequency, the faster the mode decays.
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